then, as Hurwitz showed,

$$
\begin{equation*}
\beta_{4 m}=(1+i)^{4 m}\left\{(1+i)^{4 m}-2\right\} E_{m} \tag{10}
\end{equation*}
$$

The writer [1, Theorem 9] has proved that if $p^{r} \mid m, \quad p-1 \nmid 4 m$, then

$$
\beta_{4 m} \equiv 0 \quad\left(\bmod p^{r}\right)
$$

Thus (10) yields

$$
\begin{equation*}
\left\{(1+i)^{4 m}-2\right\} E_{m} \equiv 0 \quad\left(\bmod p^{r}\right) \tag{11}
\end{equation*}
$$

Since $p-1 \nmid 4 m$, the denominator of E_{m} is not divisible by p, so that (11) implies

$$
\begin{equation*}
\left\{(1+i)^{4 m}-2\right\} N_{m} \equiv 0 \quad\left(\bmod p^{r}\right) \tag{12}
\end{equation*}
$$

In the next place, since

$$
(1+i)^{4 m}=(-4)^{m}
$$

it is evident that

$$
(1+i)^{2 m}-2 \equiv 0 \quad(\bmod p)
$$

if and only if

$$
\begin{equation*}
(-1)^{m} 2^{2 m-1} \equiv 1 \quad(\bmod p) \tag{13}
\end{equation*}
$$

If, therefore, (13) is not satisfied, it is clear from (12) that

$$
N_{m} \equiv 0 \quad\left(\bmod p^{r}\right)
$$

Finally we note that if $p=m$, then (13) is not satisfied and (7) follows at once.
Duke University
Durham, North Carolina

1. L. Carlitz," "Congruences connected with the power series expansions of the Jacobi elliptic functions,", Duke Math.J., v. 20, 1953, p. 1-12.
2. L. Carlitz, "The coefficients of singular elliptic functions," Math. Ann., v. 127, 1954, p. 162-169.
3. L. Carlitz, "Some arithmetic properties of the lemniscate coefficients," Math. Nachr., v. 22, 1960, p. 237-249.
4. A. HURwITz, "Entwickelungscoeffizienten der lemniscatischen Funktionen," Math. Ann., v. 51, 1899, p. 196-226 (Mathematische Werke, Basel, 1953, v. 2, p. 342-373).

All Factors $q<10^{\mathbf{8}}$ in All Mersenne Numbers $2^{p}-1, p$ Prime $<\mathbf{1 0}^{4}$

By H. Riesel

During the year 1960 the author made additional investigations respecting factors of Mersenne numbers $M_{p}=2^{p}-1$, where p is a prime. The author has earlier examined the least factor q of M_{p}, for $p<10^{4}$, if $q<10 \cdot 2^{20} \approx 10^{7}$. This inquiry was secondary to an effort to ascertain Mersenne primes [1].

The present examination, which resulted in 255 new factors of the numbers M_{p}, was done in the following manner: All primes $s<10^{8}$, for which $s \equiv 1(\bmod 2 p)$ and $s \equiv 1 \pm(\bmod 8)$ were tested as factors of M_{p} for $1200<p<10000$. The range $p<1200$ has been examined by Brillhart and Johnson [31 .

Received February 10, 1961.

To save computing time the following scheme was used. If it takes long to decide whether a number s of the kind in question is a prime, but an examination of whether $2^{p} \equiv 1(\bmod s)$ can be accomplished in a short time, it may be convenient to test unnecessarily some s-values which are not primes. Such values can be obtained by using such s-values as do not contain any factor $\leqq t$, where t is given. If $\sqrt{s} \leqq t<s$ only primes remain. Generally, if $t<\sqrt{s}$ the fraction

$$
\gamma=\gamma(t)=\prod_{p=3}^{t}\left(1-\frac{1}{p}\right), \quad p \quad \text { prime }
$$

of all numbers remaining after this test. Preparing the program for use on the BESK, it was found by test runs that the computing time was minimal with the following t-values:

$$
\begin{aligned}
& t=40 \quad \text { for } \quad 1200<p<2000 \\
& t=70 \quad \text { for } \quad 2000<p<3000 \\
& t=90
\end{aligned} \text { for } 3000<p<4000
$$

The running time on the BESK was about 20 minutes for each p.
All Mersenne numbers M_{p} with $p<10000$ have now been examined with respect to all factors $q<G=10^{8}$; for some M_{p} this limit G has been considerably raised. A summary is given below of what in the author's opinion has so far been accomlished in this field:

$p \leqq 97$	completely factored
$p=101$	$G=2^{35}$
$103 \leqq p \leqq 149$	$G=2^{31}$
$p=151$	completely factored
$157 \leqq p \leqq 257$	$G=2^{31}$
$263 \leqq p \leqq 389$	$G=2^{30}$
$p=397$	$G=2^{32}$
$401 \leqq p \leqq 1021$	$G=2^{30}$
$1031 \leqq p \leqq 1193$	$G=2^{28}$
$1201 \leqq p \leqq 2999$	$G=10^{8}$
$3001 \leqq p \leqq 3593$	$G=10^{8}$, if any factor is known
$3001 \leqq p \leqq 3593$	$G=38400 p+1$, if no factor is known
$3607 \leqq p \leqq 9973$	$G=10^{8}$

All hitherto known factors are to be found in [1], [2] and this paper. Furthermore, the author has calculated the two largest factors of M_{97} and M_{151}; these are 13842607235828485645766393 and 7289088383388253664437433
respectively.
As has earlier been pointed out [3], two typographical errors occurred in [1]; the factors belonging to M_{2689} and M_{5743} should be 7158119 and 643217, respectively.

Some of the factors referred to below have been calculated by Edgar Karst [4],
[5], namely, the 24 factors designated by an asterisk $\left(^{*}\right)$. Furthermore, all factors stated in [1] and [2] as well as in this paper have been checked with a special program and have been found correct, except for the typographical errors mentioned above.

Lastly, the author desires to express his gratitude to the Swedish Board for Computing Machinery, which has graciously provided machine time on the BESK for this study.
Stockholm-Vallingby
Sweden
EDITOR'S NOTE: During the period in which this paper was in process of publication A. Hurwitz [6] has listed 92 Mersenne composites, corresponding to primes p in the interval $330<p<5000$, for which no factor is known at present. He also lists M_{8191} as such a composite number, and he announces the primality of M_{4253} and M_{4423}. S. Kravitz [7] has extended the writer's earlier table [1] to the range $10,000<p<15,000$.

1. H. Riesel, "Mersenne numbers", MTAC v. 12, 1958, p. 207-213.
2. J. Brillhart \& G. D. Johnson, "On the Factors of Certain Mersenne Numbers," Math. Comp. v. 14, 1960, p. 365-369.
3. J. L. Selfridge, MTE 271, MTAC, v. 13, 1959, p. 142.
4. E. Karst, "New factors of Mersenne numbers," Math. Comp., v. 15, 1961, p. 51.
5. E. Karst, "Faktorenzerlegung Mersennescher Zahlen Mittels Programmgesteuerter Rechengeräte," Numer. Math., v. 3, 1961, p. 79-86.
6. Alexander Hurwitz, "New Mersenne primes," Math. Comp., v. 16, 1962, p. 249-251.
7. Sidney Kravitz, "Divisors of Mersenne numbers $10,000<p<15,000$," Math. Comp., v. 15, 1961, p. 292-293.

p	Factors of M_{p}	p	Factors of M_{p}
1201	1967239-8510287	2069	1816583
1223	31799	2081	$3308791 \cdot 3874823 \cdot 7920287$
1229	46703	2099	22858111
1231	5684759	2113	52030513
1249	52358081	2131	17359127
1321	1394977-4848071	2251	778847*
1361	3397057	2309	61636447
1367	65617.232391 2561759	2339	299393•1445503
1399	28875361	2389	172009.267569
1433	$53101249 \cdot 86576129$	2393	10758929
1439	46049 - 172681	2399	5201033
1543	472159	2411	1393559.4185497
1583	189961-8589359 - 43817441	2579	19868617
1627	25722871	2593	62233
1637	81679753	2609	7404343
1663	6013409	2617	2213983
1667	2493833•10975529	2621	12895321
1723	56421359	2657	148793-318841
1741	4230631	2663	15743657
1789	254039	2677	465799
1861	2735671	2687	1918519-2434423
1879	13697911	2689	90092257
1901	12147391	2699	307687-1187561
1931	50207	2711	76954447
1979	32392273	2731	93968249
2063	53639•165041	2749	45737863

p	Factors of M_{p}	p	Factors of M_{p}
2843	187639	5281	24715081
2903	60457879	5303	6024209 . 33737687
2917	22869281	5381	48170713
2963	1374833 -68747527	5417	3196031
2999	95278231	5431	1401199
3037	145777*	5507	21675553
3041	5565031*	5521	3533441
3067	22063999*	5563	623057
3083	15914447*.68886553	5569	37813511
3119	230807*.14222641*	5639	2447327
3121	31509617*	5717	45737
3167	12237289*	5741	48224401
3181	127241*	5821	88805177
3191	40895857*	5827	91658711
3253	46452841*	5867	16239857
3257	4032167*	5903	15489473-42182839
3299	19873177*	6067	3118439
3329	665801*.1005359*.26225863*	6121	81237913
3391	1519169*	6199	743881
3433	5952823*.12688369*	6271	13959247
3529	5335849*.13523129*	6287	5180489-57186553
3557	2952311*	6311	68423863
3593	6086543*	6317	4548241
3701	318287-1561823	6353	2172727
3719	9490889	6373	140207
3761	55655279	6427	10951609
3767	50455199	6481	$2799793 \cdot 38678609$
3779	2086009 -6084191	6491	69440719
3793	91033	6529	1201337
3863	1120271	6563	26777041
3923	2236111	6761	26340857
4003	16756559	6841	$64962137 \cdot 77973719$
4021	10800407	6871	39027281
4099	262337	6947	333457
4127	2080009	6977	209311
4139	16820897	6983	13630817
4211	92271433-94528529	7079	$56633 \cdot 1486591$
4373	104953	7159	26058761
4507	21381209	7187	48871601
4597	73553.93769607	7211	57689.475927
4759	161807	7253	52613263
4903	13973551	7349	42197959
4919	2872697	7451	95506919
4931	33264527	7457	19969847
4943	128519	7499	99121783
4957	3003943	7517	12012167
5003	1050631	7547	16980751
5009	36425449	7673	13918823
5087	1678711	7717	19446841
5119	82978991	7841	6837353
5189	3362473	7883	441449
5197	20195543	7901	442457-679487
5227	47126633	8087	96671999
5231	41849 -470791	8111	41917649
5273	38134337	8123	25798649

p	Factors of M_{p}
8167	76835137
8171	9412993
8209	14759783
8221	$9667897 \cdot 18480809$
8269	19630607
8273	$28062017 \cdot 62014409$
8287	36877151
8377	$134033 \cdot 787439 \cdot 2596871$
8429	$455167 \cdot 927191$
8467	6655063
8539	13662401
8563	32402393
8573	12345121
8623	80504329
8699	43790767
8737	6640121
8741	5926399
8849	52368383
8933	36232249
8969	13345873
9029	25913231

p	Factors of M_{p}
9049	$28721527 \cdot 28938703$
9059	30293297
9109	49625833
9127	8707159
9137	2704553
9161	86901247
9199	53354201
9221	91841161
9283	$29352847 \cdot 34031479 \cdot 41532143$
9337	$2838449 \cdot 2405633$
9403	5735831
9479	48532481
9601	$3513967 \cdot 16974569 \cdot 17256487$
9643	12362327
9743	34626623
9817	20556799
9829	14075129
9851	3723679
9859	1656313
9883	10436449
9973	$7419913 \cdot 10591327 \cdot 19367567$

Certain Properties of Pyramidal and Figurate Numbers

By M. Wunderlich

It is well known that despite some extensive computation [1], the only two known solutions to the Diophantine equation

$$
\begin{equation*}
a^{3}+b^{3}+c^{3}=3 \tag{1}
\end{equation*}
$$

are $a=b=c=1$, and $a=b=4, c=-5$. Professor Aubrey Kempner noted at a number theory seminar at the University of Colorado that these solutions also satisfy the equation

$$
\begin{equation*}
a^{3}+b^{3}+c^{3}=a+b+c . \tag{2}
\end{equation*}
$$

Therefore, it is of interest whether or not (2) has solutions other than these two and if so, how many. Since there are so few solutions known to (1), it seemed reasonable to conjecture that there would be only finitely many solutions to (2).

If we change the sign of the third variable and divide through by six, we see that (2) is equivalent to

$$
\frac{a^{3}-a}{6}+\frac{b^{3}-b}{6}=\frac{c^{3}-c}{6}
$$

or

$$
\frac{(a-1)(a)(a+1)}{6}+\frac{(b-1)(b)(b+1)}{6}=\frac{(c-1)(c)(c+1)}{6} .
$$

[^0]
[^0]: Received March 13, 1962. The research for this paper was supported in part by the National Science Foundation.

